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Abstract

This paper presents a neural network for robust nor-
mal estimation on point clouds, named AdaFit, that can
deal with point clouds with noise and density variations.
Existing works use a network to learn point-wise weights
for weighted least squares surface fitting to estimate the
normals, which has difficulty in finding accurate normals
in complex regions or containing noisy points. By ana-
lyzing the step of weighted least squares surface fitting,
we find that it is hard to determine the polynomial order
of the fitting surface and the fitting surface is sensitive to
outliers. To address these problems, we propose a simple
yet effective solution that adds an additional offset predic-
tion to improve the quality of normal estimation. Further-
more, in order to take advantage of points from different
neighborhood sizes, a novel Cascaded Scale Aggregation
layer is proposed to help the network predict more accu-
rate point-wise offsets and weights. Extensive experiments
demonstrate that AdaFit achieves state-of-the-art perfor-
mance on both the synthetic PCPNet dataset and the real-
word SceneNN dataset. The code is publicly available at
https://github.com/Runsong 123/AdaFit.

1. Introduction

In point cloud processing, a fundamental task is to ro-
bustly estimate surface normals from point clouds, which
plays a key role in many practical applications, such as sur-
face reconstruction [1], registration [2], segmentation [3],
primitive fitting [4], reverse engineering [5] and grasp-
ing [6]. Due to the presence of noise, point density vari-
ations, and missing structures, robust and accurate surface
normal estimation on point clouds remains challenging.

The most direct way for normal estimation is to regress
the normal vector from the feature extracted on neighbor-
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Figure 1. (a) Given the input point cloud (left), our target is to es-
timate a normal for every point (right). (b) Current weighted least
square surface fitting is severely affected by underfitting (top),
overfitting (middle) or outliers (bottom), which leads to inaccurate
normal estimation. (c) The error maps of two normal estimation
methods. The first model only uses the weighted least square sur-
face fitting (left) while the second model adds additional offsets
to adjust the distribution of neighboring points, which produces a
more accurate normal estimation. (d) The reconstructed surfaces
using normals from the model with weights only (left) and the
model with weights and offsets (right).
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ing points [7, 8, 9, 10, 11, 12]. However, such brute-force
regression only forces the network to memorize normal vec-
tors, which leads to limited generalization ability. This
generalization problem becomes more severe on real-world
data due to the scarcity of training data.

Rather than direct regression, a more accurate approach
to estimate the normal for a specific point is to fit a geomet-
ric surface (plane or polynomial surface) on its neighboring
points and then compute the normal from the estimated sur-
face. Since the estimated surface is usually sensitive to the
noise or outliers present in the neighborhood, most exist-
ing methods [13, 14, 15] use weighted surface fitting which
predicts point-wise weights to control the contribution of
every neighboring point to the final surface. The focus of
these works is to obtain more accurate point-wise weights
that can reduce the effects of noisy points and outliers as
possible. Though substantial improvements on normal es-
timation have been achieved by using a neural network to
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learn a more accurate weight [13, 15] in a data-driven man-
ner, the estimated normals are still not accurate in complex
regions as shown in Fig. 1 (c).

In this paper, we conduct an analysis on the widely-used
weighted surface fitting for normal estimation and find two
inherent problems in this approach. The first is brought by
the inconsistent polynomial orders between the true surface
and the fitted surface. The underlying surfaces of different
points usually have different polynomial orders while cur-
rent methods always choose a constant order for all points,
e.g. plane in [15] or 3-jet in [ 13]. Such inconsistency either
results in an underfitting, which smooths out the fine details
in the neighborhood shown in the top of Fig. 1 (b), or over-
fitting to noise, which brings a large variance to the output
normal shown in the middle of Fig. 1 (b). Both the over-
fitting and underfitting may result in an erroneous normal
estimation. The other problem is that the weighted surface
fitting is sensitive to outliers. By theoretically analyzing the
relationship between point-wise weights and the final esti-
mated normal, we find that the weight on a point far away
from the fitted surface will have a larger impact on the final
normal direction. In this case, since outliers are much far
away from the fitted surface than inlier points, even small
weights on outliers will thoroughly mess up the estimated
normals, as shown in the bottom of Fig. 1 (b).

To address the above two problems, we propose a sim-
ple yet effective solution by predicting additional point-wise
offsets to adjust the distribution of the neighboring points.
When the underlying surface has a different polynomial or-
der from the predefined one, the adjustment brings more
flexibility to the network to project neighboring points onto
a surface with the predefined order. Though the resulted sur-
face may not be precisely consistent with the ground truth
one, the normal of the center point is much more accurate
than the one estimated by the direct weighted surface fitting.
Meanwhile, the outliers in the neighborhood can be offset
to a position near the resulted surface such that all points
will have similar distances to the surface. Thus, in com-
parison with the weighted surface fitting where the weights
of outliers have larger impacts on the normal, points con-
tribute more evenly after the adjustment, which leads to a
more robust normal estimation.

Another challenge is the selection of optimal neighbor-
hood size in the surface fitting. Here, we call the neighbor-
hood size as scale. A large scale containing more points
will provide more information about the underlying surface
but may include irrelevant points which easily leads to over-
smoothing sharp edges. A small scale only contains a small
set of most relevant points thus may improve the accuracy of
the normal estimation but is unavoidably sensitive to noise.
The scale is a very sensitive hyperparameter that requires a
carefully tuning for an accurate normal estimation [ 13, 15].

To address the problem of the scale selection, we use a

novel architecture design called Cascaded Scale Aggrega-
tion (CSA) layer. With several CSA layers, we can extract
features from the large scale while only fit the surface with
neighboring points in a small scale. Thus, using CSA layer
for feature extraction enjoys the benefits from both the large
scale, which brings more information about the surface, and
the small scale, which results in a more accurate normal es-
timation.

To this end, we implement our idea by designing a net-
work called AdaFit, which takes a query point with its
neighboring points as input and outputs the normal of the
query point. AdaFit extracts features with CSA layers
and simultaneously predicts point-wise weights and offsets.
Then, the predicted weights are used to fit a polynomial sur-
face of order 3 on these offset neighboring points. Finally,
the output normal is computed from the fitted surface.

To validate the proposed method, we conduct extensive
experiments on the widely-used PCPNet dataset [7]. The
results show that the proposed AdaFit achieves state-of-the-
art performance on this benchmark. To show the generaliza-
tion ability of our AdaFit, we evaluate it on two real-world
datasets, the indoor SceneNN [16] dataset and the outdoor
Semantic 3D [17] dataset. Without any further training,
AdaFit significantly outperforms baselines by a large mar-
gin on these two datasets. Furthermore, we demonstrate the
applications of the normals predicted by AdaFit on the point
cloud denoising and the surface reconstruction.

Our contributions are summarized as follows:

* We provide a comprehensive analysis on the weighted
surface fitting and find two critical problems of these
methods in normal estimation.

* We propose to predict offsets to adjust the distribution
of neighboring points which brings more robustness
and accuracy in normal estimation.

e We design the network AdaFit with novel CSA lay-
ers to enjoy benefits from both small and large scales,
which achieves improved performance in multiple
standard datasets.

2. Related work
2.1. Traditional normal estimation

The most popular method for normal estimation is based
on Principal Component Analysis (PCA) [18] and Singular
Value Decomposition (SVD) [19], which are utilized to find
the eigenvectors of the covariance matrix constructed from
the neighboring points. These approaches heavily depend
on the selected scale and are sensitive to noise and outliers.
Following this work, moving least squares (MLS) [20],
variants fitting local spherical surfaces [21], Jets [22] (trun-
cated Taylor expansion) are proposed to fit more complex

6119



local surface. Generally, they choose a large-scale neigh-
borhood size to improve the robustness, but tend to the over-
smooth details. Mitra et al. [23] reduced the neighborhood
size by finding a optimal radius r from point density or
curvatures of underlying surfaces. To retain more detailed
shape, several methods [24, 25, 26, 27] utilize Voronoi cells
or Hough transform. Although these techniques come with
strong theoretical approximation and robustness guarantees,
such methods need to manually set the parameters accord-
ing to the noise levels in the raw point clouds.

2.2. Learning-based normal estimation

Regression based methods. With the success of deep
learning in a wide range of domains [28, 29, 30, 31, 32, 33],
some deep learning-based normal estimation approaches
are proposed, which utilize the powerful feature extraction
capability of deep learning and transform the normal es-
timation task into a regression or classification task. De-
pending on the formats of input, learning-based methods
can be divided into two groups. The first group of meth-
ods [34, 12, 35] transform unstructured point clouds into
structured grid format and apply Convolutional Neural Net-
work (CNN) for feature learning. For example, Boulch
et al. [34] associate a 2D grid representation to the local
neighborhood of a 3D point via a Hough transform, and
formulate the normal estimation as a discrete classification
problem in the Hough space. The second group of meth-
ods [7, 8,9, 10, 11] directly estimate surface normals from
unstructured point clouds. For instance, PCPNet [7] esti-
mates surface normal by a deep multi-scale PointNet [28]
architecture, which processes the multiple neighborhood
scales jointly, thus leading to the phenomenon of over-
smoothing. To overcome the oversmoothing phenomenon,
Nesti-Net [8] applied a MoE [36] structure to predict the
optimal scale rather than direct concatenation of multiple
scales, which yields an improved performance. Similarly,
Zhou et al. [9] improve surface normal estimation by using
an extra feature constraint mechanism and a novel multi-
scale neighborhood selection strategy. Hashimoto et al. [10]
propose a joint model that exploits a PointNet for local fea-
ture extraction and a 3DCNN for the spatial feature encod-
ing to efficiently incorporate local and spatial structures.

Surface fitting based methods. The former learning-
based normal estimation studies [7, 8, 9, 10, 11, 12] di-
rectly regress the surface normal with fully connected lay-
ers, which leads to weak generalization ability and unstable
prediction results. To solve the these limitations, Lenssen et
al. [15] and DeepFit [13] first utilize the network to predict
point-wise weights acting as a soft selection of the neigh-
boring points, then estimate the surface normal by the dif-
ferentiable and weighted least squares plane or polynomial
surface fitting. These methods heavily constrain the space
of solutions to be better suited for the given problem and

enable the computation of additional geometric properties
such as principal curvatures and principal directions. Our
method also belongs to this category and we add additional
offsets to make the output normals more robust and accu-
rate. Moreover, we propose a novel CSA layer to aggregate
features from multiple neighborhood sizes.

3. Method
3.1. Problem statement

Given a point p and its neighboring points {p;|i =
1,...,N,}, we want to estimate the normal n,, at the point.
The normal estimation problem can be solved by fitting a
surface on the neighboring points and compute the normal
from the fitted surface. Here, we adopt a widely-used n-jet
surface model [22], which represents the surface by a poly-
nomial function .J,, : R? — R mapping coordinates (z, )
to their height z in the tangent space by

2= @,y B) = Yoo Xy s Iy, (1)

where 3 are coefficients. To simplify the notations, we de-
note the vector
ﬂ = (B0,0a e aBk,0>Bk71,17 e 731,/@71’ BOJW t )
and we define 8 = BLO and 3 = BAOJ.
Once the surface is fitted, the normal can be computed
by:
7[3 77B al
n, = U Onl) 2)
VB + B+ 1
In order to find the correct surface function in Eq. 1, a
point-wise weight is predicted on every point. Then, all
points are transformed to the tangent space by Principle
Component Analysis (PCA) and we solve for the surface
coefficients by a weighted least square (WLS) fitting prob-
lem as follows

NP
B = argmin » _w;|[Jn (2,95 0) — 2%, 3)

where w; is the point-wise weight and (z;, y;, z;) is the co-
ordinate of p; in the tangent space. The solution to Eq. 3 is
given by

B=MWM) " (MTWz), 4)

where W € R *Nr js the diagonal matrix consist-
ing of the w;, M € RNe XN whose i-th row vec-
tor M; is (1,xi,yi,...,xfyf”,xiyffl,xﬁyl”) and z =

(21, "'7ZNp) € RN»,
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3.2. Analysis on WLS for normal estimation

To utilize the WLS for the normal estimation, most ex-
isting works focus on learning a more accurate weight for
every neighboring point. However, two inherent problems
of WLS prevent these methods from estimating a more ac-
curate normal.

Inconsistent polynomial orders. For different points,
their neighboring points usually conform to surfaces of dif-
ferent polynomial orders. However, the order n in Eq. 1 is
a constant predefined integer in WLS models for all points.
The inconsistency of orders either brings overfitting or un-
derfitting on the surface fitting. When the predefined order
n is smaller than the order of the ground truth surface, an
underfitting occurs so that the model struggles to find a true
normal for the point. Meanwhile, when the predefined order
n is larger than the true order, overfitting would make the fit-
ting process sensitive to the noise on the neighboring points,
thus brings instability on the estimated normals. A typical
example is shown in Fig. 2, where we fit surfaces with dif-
ferent polynomial orders and red points in the first row show
that different points have different suitable polynomial or-
ders for the normal estimation. In the second row, we show
the normal errors using different polynomial orders for sur-
face fitting while in the last figure, we always choose their
the best polynomial order for different points, which sub-
stantially reduces the overall normal RMSE to 12.85°.

Sensitivity to outliers. Meanwhile, the WLS is also sen-
sitive to outliers in the neighborhood. By checking how the
weight of every neighboring point affects the final fitted sur-
face, we can prove the following proposition.

Proposition 1. For a specific point p;, if it is farther from
the fitted surface in Eq. 1, which means the predicted height
zi = Jn(B,xi,y;) on this point is largely deviated from
the input height z;, then the weight on this point will have
a larger impact on the fitted surface, i.e. 0B/0w; =
(MTW M)~ M (2 — 2;).

In general, outliers will locate far away from the fit-
ted surface with larger z; — 2], the resulted surface coef-
ficients $ will be more sensitive to their weights according
to the Proposition 1. Moreover, we can directly compute
the derivative of the estimated normal n,, to the point-wise
weight w; by g;’: = %Ig g—fi. Thus, even though the net-
work may learn to place small weights on these outliers, a
small perturbation on the weights of outliers will still lead
to a significant change in the output normal.

3.3. Offset prediction

To address the above two problems, we propose a simple
yet effective solution, in which we first predict an additional
point-wise offset (Ax;, Ay;, Az;) on every point to adjust
the distribution of points. Then, WLS is applied on these

RMSE =18.05 RMSE=19.90 RMSE=14.01 RMSE=12.85
Figure 2. The first row shows the best polynomial orders for differ-
ent points. The second row shows the corresponding error map of
different polynomial orders and the last one (“mix”) always uses
the best orders for different points for the normal estimation.

offset points to find the surface by

Np
B = argmin Y wjl|Jn (@i Az, yi+-Ays; o) — (2422,

®)
Due to the offset prediction, the network has an additional
flexibility to adjust points to construct a virtual surface that
has the same polynomial order as the predefined one. Thus,
the offset prediction greatly reduces the underfitting or over-
fitting phenomenons. Meanwhile, outliers can be offset
onto the virtual surface by the network so that the resulted
surface will be less sensitive to their weights. Two examples
are shown in Fig. 3, in which adding the offset prediction
brings more robustness to outliers and avoids the overfitting
or the underfitting. More examples of neighboring points
before and after being offset can be found in the supple-
mentary materials.

3.4. Cascaded Scale Aggregation

In order to extract features for accurate weight and off-
set prediction, we propose a novel layer called Cascaded
Scale Aggregation (CSA) layer. As shown in Fig. 4, the
CSA layer is in charge of extracting features from different
neighborhood sizes (called scales). For a point p, we define
a scale of this point by an integer s, which is represented
by a point set N, including s-nearest points to the point.
A CSA layer takes two scales (si, si+1) as input, where
Sk+1 < Sk so that Ny C Nj, . Itextracts a feature fj11
on a point p; € N,

Sk+41

Jr41,i = (o (MaxPool{ fx j|p; € Ns,})s fri) (6)

k+1

by
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Figure 3. Two examples of direct fitting the surface with weights
and fitting with offset points. Green arrows are true normal direc-
tions while red arrows show the predicted normal directions. The
first example contains some irrelevant outliers while the second
one shows the underlying surface is too complex for the current
polynomial order to achieve a good fitting. The offsets adjust the
distribution of points, which produce a more accurate normal esti-
mation in both cases.

Inconsistent polynomial order

where both ¢ and ¢}, are Multi-layer Perceptrons (MLP),
fr+1,4 is the output feature on the point p; at the scale sz 1,
fr,: is the feature of the same point at the scale s; and
{fr,jlp; € Ns,} is the set of all features of points in N, .
Note that, since N, C Ns,, all points in Ny, ,, will also
be in the N, .

The CSA layer uses features from a larger scale to help
the feature extraction at the current scale while the final fit-
ting only uses the smallest scale. The large scale provides
more information of the underlying surfaces while the small
scale includes the most relevant points for the surface fit-
ting. Thus, the proposed CSA layers enjoy the benefits from
both the large scale and the small scale, which results in an
accurate surface fitting.

k41 k41

3.5. Implementation details

Based on the CSA layers, we design a network called
AdaFit which simultaneously predicts point-wise offsets
and weights. As shown in Fig. 5, AdaFit mainly consists
of MLPs and CSA layers for feature extraction on every
point. Then, two heads are used to regress the weights and
the offsets.

Loss.To train our network, we follow the same loss as
proposed in DeepFit [13] which minimizes | Ng; x N| be-
tween the predicted normal /N and the ground truth normal
Ng¢. Meanwhile, we also adopt the neighborhood consis-
tency loss and transformation regularization loss used in
DeepFit. Please refer to [13] for more details.

Parameter setting. The polynomial order n for the sur-
face fitting is 3 by default. For each query point, we use

e——
MaxPool

fie = @

@)
(]
L ox ®
' % Repeat N

0 % .
fie+1 O S+
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Figure 4. The structure of a CSA layer, which extracts the features
from the large scale by a global pooling and concates the features
from the large scale to features of points in a small scale as the
output.

=

UO Sk

CSA layer

KNN to pick the nearest K-point. The initial neighborhood
size is 700. AdaFit consists of two CSA layers with the
diminishing neighborhood size from 700 to 350, 175.

4. Experiment
4.1. PCPNet dataset

We follow exactly the same experimental setup as [7]
including train-test split, training data augmentation and
adding noise or density variations on testing data. We use
the Adam [37] optimizer and a learning rate of 5 x 10~* for
the training with a batch size of 256. AdaFit is trained with
600 epochs on a 2080Ti GPU.

Baselines. We consider three types of baseline meth-
ods: 1) the traditional normal estimation methods PCA [18]
and jet [22]; 2) the learning-based surface fitting methods
Lenssen et al. [15], DeepFit [13]; 3) the learning-based nor-
mal regression methods PCPNet [7] and Nesti-Net [8].

Metrics. We use the angle RMSE between the predicted
normal and the ground truth as our main metrics for evalua-
tion. We also draw the AUC curve of normal errors to show
the error distribution.

Quantitative results. The RMSE of AdaFit and base-
line methods are shown in Table 1 and the AUC of all meth-
ods are shown in Fig. 6. The results show that AdaFit out-
performs both the traditional methods and learning-based
methods in all settings, which demonstrates the effective-
ness of using offsets to adjust the point set. Especially on
the point clouds with density variations, baseline methods
may fail to find enough points on sparse regions for the
surface fitting while AdaFit use the offset to project points
to the neighboring regions for more robust surface fitting.
In addition, we adding the results of DeepFit [13] with de-
noising pre-processing [31]. Though denoising reduces the
noise and finds smooth surfaces, it does not offset the points
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Figure 5. The architecture of AdaFit for normal estimation. AdaFit utilizes CSA layers to extract features from different scales and uses
the offset points of the smallest scale with weights to fit a surface. Then the normal vector can be calculated from the surface.

.. DeepFit  Denoising+ Lenssen  Nesti-Net PCPNet
Aug. AdaFit [13] DeepFit [13] etal. [15] 4] 7] PCA [18] Jet[22]
No noise 5.19 6.51 8.48 6.72 6.99 9.66 12.29 12.23
Noise (o = 0.00125) 9.05 9.21 10.38 9.95 10.11 11.46 12.87 12.84
Noise (o = 0.006) 16.44 16.72 16.79 17.18 17.63 18.26 18.38 18.33
Noise (o = 0.012) 21.94 23.12 22.18 21.96 22.28 22.8 27.5 27.68
Varing Density(Strips) 6.01 7.92 9.62 7.73 8.47 11.74 13.66 13.39
Varing Density(gradients) ~ 5.90 7.31 9.37 7.51 9.00 13.42 12.81 13.13
Average 10.76 11.8 12.8 11.84 12.41 14.56 16.25 16.29

Table 1. Normal RMSE of AdaFit and baseline methods on the PCPNet dataset.

to the ground truth positions on the surfaces, which still re-
sults in a larger RMSE.

Qualitative results. Fig. 7 shows the normals estimated
by AdaFit and Fig. 8 visualizes the angle errors of AdaFit
and baseline methods on different shapes. It can be seen that
Lenssen et al. [15] perform better on the flattened regions
while DeepFit [13] can better handle curved regions but is
not accurate for regions with sharp curves. In contrast, the
proposed AdaFit is relatively more robust on all regions and
all settings (noise or density variations). Additional detailed
analysis on normal estimation of sharp edges can be found
in the supplementary materials.

4.2. Results on real datasets

To test the generalization capability of AdaFit, we di-
rectly evaluate AdaFit on real datasets including the indoor
SceneNN [16] dataset and the outdoor Semantic3D [17]
dataset. Note that all the methods are only trained on the
PCPNet dataset and directly evaluated on these datasets.

The SceneNN dataset. The SceneNN dataset contains
more than 100 indoor scenes collected by a depth cam-
era with provided ground-truth reconstructed meshes. We
obtain the point clouds by sampling on the reconstructed
meshes and compute the ground-truth normal from the
meshes. The RMSE of AdaFit and baselines are shown
in Table 2 and the angle error visualizations are shown in
Fig. 9. The results show that AdaFit can predict more accu-
rate normals than baseline methods.
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Figure 6. Normal error AUC curves of AdaFit and baseline meth-
ods. X-axis shows the threshold in degree and Y-axis shows the

ratio of correct estimated normals under a given threshold.

The Semantic3D dataset. The Semantic3D dataset con-
tains point clouds collected by laser scanners. Since there is
no ground truth for normal estimation, we only show qual-
itative results in Fig. 10. The results show that AdaFit can
find sharp edges on point clouds while other methods over-
smooth these normals.
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Figure 7. Normals estimated by AdaFit on the PCPNet dataset.
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Figure 8. Errors of normal estimation on the PCPNet dataset.
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DeepFit
Figure 9. Error maps of estimated normals on the SceneNN
dataset.

AdaFit DeepFit [13]
RMSE  16.25 18.33

Table 2. Normal RMSE of AdaFit, DeepFit [13] and Lenssen et
al. [15] on the SceneNN dataset.

Lenssn et al. [15]
18.54

Semantic 3D Input AdaFit DeepFit Lenssen et al.

BB BB
/I

Figure 10. Estimated normals on the semantic 3D dataset.

n 1 2 3
Weight v v v v v v
Offset v v v

No Noise 809 596 |10.07 6.06 | 791 6.00

Low Nose |10.49 934 | 11.30 9.28 | 9.82 9.27
Med Noise | 16.59 16.56 | 16.59 16.48 | 16.36 16.48
High Noise | 21.80 21.82 | 21.61 21.77 | 21.48 21.76
Stripes 9.72 7.10 | 12.00 7.18 | 9.80 7.09
Gradients 854 6.67 | 10.83 6.80 | 8.59 6.72
Average 12.54 11.24 | 13.73 11.26 | 12.33 11.22

Table 3. Normal RMSE of models with or without offset prediction
on the PCPNet dataset.

Scale 256 500 700 700
Weight v v v v
Offset v v v v
CSA v
No Noise 5.17 5.79 6.00 5.19
Low Noise 9.17 9.17 9.27 9.05
Med Noise 16.71 16.47 16.48 16.44
High Noise 23.02 22.12 21.76 21.94
Stripes 6.03 6.64 7.09 6.01
Gradients 6.00 6.30 6.72 5.90
Average 11.02 11.08 11.22 10.76

Table 4. Normal RMSE of models with or without CSA layers on
the PCPNet dataset.

Threshold 0.0 0.05 0.10 030 0.50 Offset

No Noise 791 735 741 794 841 6.00

Low Noise 9.82 9.53 9.57 10.07 1049 9.27
Med Noise 16.36 16.31 16.37 1698 18.06 16.48
High Noise 21.48 21.43 21.44 2222 2342 21.76
Stripes 9.80 897 884 894 9.61 7.09
Gradients 859 809 811 852 9.11 6.72
Avarage 12.33 11.95 1196 1244 13.18 11.22

Table 5. Normal RMSE of models using thresholds to truncate
points and the model with offset prediction on the PCPNet dataset.
The first row shows the truncation thresholds.

4.3. Ablation study

Offset prediction. To demonstrate the effectiveness of
the proposed offset prediction, we conduct experiments on
the PCPNet dataset using models with or without offset pre-
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AdaFit  DeepFit[13] Lenssnetal.[15]
Netsuke 0.00373 0.00821 0.00677
Liberty  0.00065 0.00100 0.00106
Column 0.01148 0.02060 0.03420
Average  0.00529 0.00994 0.01401

Table 6. The comparison of the RMSE surface distance error for
surface reconstruction of our method and DeepFit [13], Lenssen et
al. [15]

diction. The backbone network in this experiment is the
same as DeepFit without any CSA layer and uses the neigh-
borhood size of 700 points. The results are shown in Ta-
ble 3, which demonstrates that the offset prediction can ef-
fectively improve the accuracy of the predicted normals.
Meanwhile, we notice that the performance of the model
without offset prediction is sensitive to the polynomial or-
der n while the model with offset prediction has similar per-
formance on different orders.

CSA layer. In Table 4, we conduct experiments on the
PCPNet dataset using models with or without CSA layers.
The results show that using CSA layers can bring improve-
ments on the normal estimation and reduce the necessity to
select a specific neighborhood size (scale).

Comparison to truncating weights. Since outliers may
have small predicted weights, a more simple way to pre-
vent these outliers from affecting the estimated normals is
to truncate points with a predefined threshold. In Table 5,
we compare the model using proposed offset predictions
with the model that truncates points with small weights. All
models take 700 neighboring points as inputs. The results
show that truncating indeed slightly improves the results but
is still inferior to the model with offset prediction.

5. Application
5.1. Surface reconstruction

Accurate normals can help the Poisson reconstruction [ 1]
to reconstruct a more high-quality and complete surface
from point clouds. In Fig. 11, we show surfaces recon-
structed by normals estimated with different methods and
the corresponding distance RMSE of reconstructed surface
is shown in Table 6. The results show that the reconstructed
surface using the normals from AdaFit is more accurate and
complete than baseline methods.

5.2. Denoising

To demonstrate the application of AdaFit in point cloud
denoising, we adopt the normal-based denoising method
proposed in [38]. The qualitative results of denoised point
clouds and their corresponding reconstructed surfaces are
shown in Fig. 12, which indicates that using the normal esti-
mated by AdaFit for denoising produces a smooth surface in
flattened regions while still keeping sharp features at edges.

Netsuke @\’ @ ) @ ! @

Liberty

Column

Input AdaFit
Figure 11. The comparison of the Poisson surface reconstruction
using the estimated normals from different methods.

DeepFit Lenssen et al. Groundtruth

EE

DeepFit

Input AdaFit Lenssen et al. Groundtruth
Figure 12. Qualitative results of point cloud denoising. The first
row shows the denoised point clouds while the second row shows

the corresponding reconstructed surfaces.
6. Conclusion

In this paper, we presented AdaFit for the normal es-
timation on point clouds. We provided a comprehensive
analysis on current weighted least square surface fitting for
normal estimation and found two inherent problems of this
kind of method. To solve these problems, we proposed the
offset prediction on current network and used a novel CSA
layer for feature extraction. AdaFit achieved state-of-the-
art performance on the PCPNet dataset and strong general-
ization capability to real-world datasets. Furthermore, we
also demonstrated the effectiveness of predicted normals of
AdaFit on several downstreams tasks.
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