

Semi-signed prioritized neural fitting for surface reconstruction from unoriented point clouds Runsong Zhu¹, Di Kang², Ka-Hei Hui¹, Yue Qian², Shi Qiu¹, Zhen Dong³, Linchao Bao², Pheng-Ann Heng¹, Chi-Wing Fu¹ ¹The Chinese University of Hong Kong ²Tencent Al Lab ³Wuhan University.

Goal

Architecture

Given unoriented point clouds, we want to reconstruct the water-tight surface meshes.

Desired properties

✓ Reconstruct accurate surfaces for objects with various topology

Reconstructed surface

Challenges

point clouds

• Existing methods have difficulty reconstructing the accurate surface for challenging topology.

Ambiguity

PE \rightarrow Reconstructed Input Unsigned Vuncertain point clouds surface supervision ______ -- Tracking Outside point --► Sampling • Off-surface point On-surface point

Results on ABC subset

Methods	F-score [↑]	$\text{CD-}L_1 \downarrow (imes 100)$	\mathbf{NC}_{\uparrow}
SPSR [25]	0.557	2.774	0.904
SAP [37]	0.660	1.368	0.915
IMLS [29]	0.626	1.245	0.923
POCO [9]	0.670	1.148	0.943
N-P [5]	0.370	2.071	0.912

• Existing methods tend to generate over-smoothed surfaces.

Fine structure

Ours	0.675	1.225	0.938
DiGS [6]	0.657	1.540	0.936
IGR [17]	0.551	4.429	0.891
SALD [3]	0.560	1.719	0.919
SAL [2]	0.407	4.676	0.870

Results on Thingi10K

Methods	F-score [↑]	$\text{CD-}L_1 \downarrow (imes 100)$	NC_{\uparrow}
SPSR [25]	0.787	2.230	0.896
SAP [37]	0.940	0.540	0.947
IMLS [29]	0.793	0.759	0.882
POCO [9]	0.902	0.610	0.939
N-P [5]	0.627	0.934	0.927
SAL [2]	0.884	0.779	0.925
SALD [3]	0.730	1.187	0.891
IGR [17]	0.308	6.471	0.631
DiGS [6]	0.942	0.529	0.954
Ours	0.943	0.520	0.960

Contribution

- We propose a new semi-signed fitting module that provides additional signed supervision, which significantly alleviates the difficulty in finding coarse shapes for complicated objects
- We introduce a loss-based per-region sampling and progressive PE, resulting in accurate surfaces with more details while generating fewer artifacts.
- We propose semi-signed prioritized (SSP) neural fitting, achieving improved performances compared to existing neural fitting methods on multiple datasets, especially with significant CD-L1 reduction.

	Density-variation			Noise		
Methods	F-score _↑	$\text{CD-}L_1\downarrow$	NC↑	F-score _↑	$\text{CD-}L_1\downarrow$	NC↑
	<i>2</i> .	(×100)	23		(×100)	
SPSR [25]	0.789	2.007	0.938	0.723	2.216	0.833
SAP [37]	0.889	0.658	0.932	0.580	1.128	0.693
IMLS [29]	0.830	0.715	0.925	0.583	1.205	0.879
POCO [9]	0.867	0.845	0.943	0.510	1.721	0.911
N-P [5]	0.397	1.359	0.945	0.257	2.027	0.901
SAL [2]	0.767	1.823	0.937	0.328	8.467	0.880
SALD [3]	0.724	1.209	0.926	0.255	3.472	0.919
IGR [17]	0.714	7.316	0.918	0.697	3.480	0.889
DiGS [6]	0.877	0.868	0.951	0.544	1.273	0.717
Ours	0.917	0.567	0.962	0.685	0.994	0.957

Results on noisy input & density-variation input (in PCPNet)